PRE-TELESCOPIC ASTRONOMICAL INSTRUMENTS

JEFF ADKINS
MDAS
JANUARY 2018

BEFORE THE TELESCOPE

- What did astronomers use before the invention of the telescope in 1610?
- Primarily they plotted positions using anglemeasuring tools
- We will investigate three of these: the quadrant, the cross-staff, and the astrolabe

Tycho's Quadrant

THE QUADRANT

- Used to measure vertical angles
- Horizontal = 0
- Vertical (zenith) = 90
- Use gravity to establish a zenith line (plumb bob)

ASSEMBLING A QUADRANT

Glue the quadrant onto construction paper.

ATTACH PLUMB BOB AND TAPE TO METERSTICK

HOW TO USE

Look through the straw at a target such as the North Star.

The angle of the North Star should equal your latitude. (within 1 degree)

To the North Celestial Pole

North Pole

WHY?

Altitude of Polaris= Your latitude*

latitude

you

Equator

*once you correct for the fact that Polaris is about 1 degree off from the Celestial Pole

THE CROSS STAFF

Glue onto construction paper as before.

Cut around the outside edges.

CROSS STAFF CONT.

FOLD AND TAPE

Fold the "tongue" back and match A to A and B to B and tape.

The dotted lines are the folds.

The scales should be perpendicular to the base.

FINAL ASSEMBLY

Slide the cross-staff onto the meterstick so the "Read meterstick here" part is towards the zero end of the meterstick.

HOW TO MEASURE

To measure an angle, slide the cross-staff until one of the scales is the same width as the object. In this case, the yellow poster and the medium scale.

Read the ruler where the slide is.

TO GET THE ANGLE *WITHOUT TRIG

Using an ordinary ruler, find the reading on the left side, then aim through the scale width in the center. The line will point to the angle on the right.

WHAT YOU CAN DO WITH IT

- Map constellations
- Measure altitude angles
- Map planet motions over time
- Measure maximum elongation angle of inferior planets

CONSTELLATION MAPS

THE ASTROLABE

"A Treatise on the Astrolabe" Geoffrey Chaucer (1391)

Wikipedia: "The *Treatise* is considered the "oldest work in English written upon an elaborate scientific instrument". It is admired for its clarity in explaining difficult concepts—although modern readers lacking an actual astrolabe may find the details of the astrolabe difficult to understand. Robinson believes that it indicates that had Chaucer written more freely composed prose it would have been superior to his translations of Boece and Melibee.

PARTS OF AN ASTROLABE

designed by Dominic Ford

MOTHER

BACK

FRONT

RETE

TRANSPARENT

RULE ADELAIDE

ASSEMBLY

Cut out the pieces
Glue to card stock
Use a brad to hold it together
Leftmost 2 pieces get flipped over
Glue front and back of Mother together

IN PRACTICE

Hold here let hang vertically

Use the back
of the Mother
and the
adelaide
to measure the
altitude of a known
star

THEN...

Rotate the rete until that star's altitude matches the altitude on the front scale. Use the rule to be precise.

Noon altitude ruler almucantars (altitudes) letters are hours azimuths

Interchangeable front plate

= "the climate" different latitudes

Retes used to be open lattices with branches pointing to a few stars.

PIECES PARTS

https://
www.astrolabes.org/
pages/plate.htm

OTHER FEATURES "Equal hour" Zodiac diagram T INDVA 1394 Calendar Treatise on the Astrolabe" Geoffrey Chaucer 1974 Calendar Saints AGITTARIUS X Tangent fraction calculator

REFERENCES

- https://www.astrolabes.org
- http://in-the-sky.org/astrolabe/
 - Building directions
- http://in-the-sky.org/astrolabe/astrolabe_jbaa.pdf
 - How to use
- Hemenway, M. K., & Robbins, R. R. (1991). Modern astronomy: an activities approach. Austin: University of Texas Press. (quadrant and cross staff)